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Exercise 12

Find the solution of the dissipative wave equation

utt − c2uxx + αut = 0, −∞ < x <∞, t > 0,

u(x, 0) = f(x),

(
∂u

∂t

)
t=0

= g(x) for −∞ < x <∞,

where α > 0 is the dissipation parameter.

Solution

The PDE is defined for −∞ < x <∞, so we can apply the Fourier transform to solve it. We
define the Fourier transform here as

F{u(x, t)} = U(k, t) =
1√
2π

ˆ ∞
−∞

e−ikxu(x, t) dx,

which means the partial derivatives of u with respect to x and t transform as follows.

F
{
∂nu

∂xn

}
= (ik)nU(k, t)

F
{
∂nu

∂tn

}
=
dnU

dtn

Take the Fourier transform of both sides of the PDE.

F{utt − c2uxx + αut} = F{0}

The Fourier transform is a linear operator.

F{utt} − c2F{uxx}+ αF{ut} = 0

Transform the derivatives with the relations above.

d2U

dt2
− c2(ik)2U + α

dU

dt
= 0

Expand the coefficient of U .
d2U

dt2
+ α

dU

dt
+ c2k2U = 0 (1)

The PDE has thus been reduced to an ODE. Before we solve it, we have to transform the initial
conditions as well. Taking the Fourier transform of the initial conditions gives

u(x, 0) = f(x) → F{u(x, 0)} = F{f(x)}
U(k, 0) = F (k) (2)

∂u

∂t
(x, 0) = g(x) → F

{
∂u

∂t
(x, 0)

}
= F{g(x)}

dU

dt
(k, 0) = G(k). (3)
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Equation (1) is an ODE in t, so k is treated as a constant. We can solve it with the Laplace
transform since t > 0. The Laplace transform of U(k, t) is defined as

L{U(k, t)} =U(k, s) =

ˆ ∞
0

e−stU(k, t) dt,

so the first and second derivatives transform as follows.

L
{
dU

dt

}
= sU(k, s)− U(k, 0) (4)

L
{
d2U

dt2

}
= s2U(k, s)− sU(k, 0)− dU

dt
(k, 0) (5)

Take the Laplace transform of both sides of equation (1).

L
{
d2U

dt2
+ α

dU

dt
+ c2k2U

}
= L{0}

The Laplace transform is a linear operator.

L
{
d2U

dt2

}
+ αL

{
dU

dt

}
+ c2k2L{U} = 0

Use equations (4) and (5) here.[
s2U(k, s)− sU(k, 0)− dU

dt
(k, 0)

]
+ α[sU(k, s)− U(k, 0)] + c2k2U(k, s) = 0

Expand the left side and substitute equations (2) and (3).

s2U(k, s)− sF (k)−G(k) + αsU(k, s)− αF (k) + c2k2U(k, s) = 0

The ODE has thus been reduced to an algebraic equation. Factor U(k, s) and bring the terms
without it to the right side.

(s2 + αs+ c2k2)U(k, s) = sF (k) +G(k) + αF (k)

Factor F (k) on the right side and divide both sides by s2 + αs+ c2k2 to solve for U.

U(k, s) =
F (k)(s+ α) +G(k)

s2 + αs+ c2k2
.

In order to change back to u(x, t), we have to take the inverse Laplace transform of U(k, s) to get
U(k, t) and then take the inverse Fourier transform of it. Our task now is to write U in a form
that we can easily transform. The two inverse Laplace transforms we will eventually use are

L−1
{

s− a
(s− a)2 + b2

}
= eat cos bt (6)

L−1
{

b

(s− a)2 + b2

}
= eat sin bt, (7)

so we want to write U with terms that have these forms. Complete the square in the denominator.

U(k, s) =
F (k)(s+ α) +G(k)(
s+ α

2

)2
+
(
c2k2 − α2

4

)
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Split up the fraction into three.

U(k, s) =

(
s+ α

2

)
F (k)(

s+ α
2

)2
+
(
c2k2 − α2

4

) +
α

2

F (k)(
s+ α

2

)2
+
(
c2k2 − α2

4

) +
G(k)(

s+ α
2

)2
+
(
c2k2 − α2

4

)
Multiply the numerator and denominator of the second and third fractions by

√
c2k2 − α2/4.

U(k, s) =

(
s+ α

2

)
F (k)(

s+ α
2

)2
+
(
c2k2 − α2

4

) +
α

2

F (k)√
c2k2 − α2

4

√
c2k2 − α2

4(
s+ α

2

)2
+
(
c2k2 − α2

4

)
+

G(k)√
c2k2 − α2

4

√
c2k2 − α2

4(
s+ α

2

)2
+
(
c2k2 − α2

4

)
Now we’re ready to take the inverse Laplace transform. Use equations (6) and (7) here.

U(k, t) = F (k)e−
α
2
t cos

√
c2k2 − α2

4
t+

α

2

F (k)√
c2k2 − α2

4

e−
α
2
t sin

√
c2k2 − α2

4
t

+
G(k)√
c2k2 − α2

4

e−
α
2
t sin

√
c2k2 − α2

4
t

To make U(k, t) easier to work with, introduce a new variable ω = ω(k) for the square root term.

ω(k) =

√
c2k2 − α2

4

Then, after factoring,

U(k, t) =

[
F (k)

(
cosωt+

α

2ω
sinωt

)
+
G(k)

ω
sinωt

]
e−

α
2
t.

It’s not necessary to consider the case where c2k2 − α2

4 < 0 because cos iωt = coshωt and
−i sin iωt = sinhωt. We’re ready now to take the inverse Fourier transform. It is defined as

F−1{U(k, t)} = u(x, t) =
1√
2π

ˆ ∞
−∞

U(k, t)eikx dk.

Plug U(k, t) into the definition of the inverse Fourier transform to get u(x, t).

u(x, t) =
1√
2π

ˆ ∞
−∞

[
F (k)

(
cosωt+

α

2ω
sinωt

)
+
G(k)

ω
sinωt

]
e−

α
2
teikx dk

Recall that sine and cosine can be written in terms of exponentials using Euler’s formula.

cosωt =
eiωt + e−iωt

2

sinωt =
eiωt − e−iωt

2i
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Substituting these expressions and bringing the e−
α
2
t in front of the integral, we get

u(x, t) =
e−

α
2
t

√
2π

ˆ ∞
−∞

[
F (k)

(
eiωt + e−iωt

2
+

α

2ω

eiωt − e−iωt

2i

)
+
G(k)

ω

eiωt − e−iωt

2i

]
eikx dk.

Expand the integrand and factor the terms in eiωt and e−iωt.

u(x, t) =
e−

α
2
t

√
2π

ˆ ∞
−∞

{[
F (k)

2
+

α

2ω
F (k)

1

2i
+
G(k)

2iω

]
eiωt +

[
F (k)

2
− α

2ω
F (k)

1

2i
− G(k)

2iω

]
e−iωt

}
eikx dk

Factor the terms in square brackets and distribute eikx.

u(x, t) =
e−

α
2
t

√
2π

ˆ ∞
−∞

{
1

2

[
F (k)

(
1 +

α

2iω

)
+
G(k)

iω

]
ei(kx+ωt) +

1

2

[
F (k)

(
1− α

2iω

)
− G(k)

iω

]
ei(kx−ωt)

}
dk

Therefore,

u(x, t) =
e−

α
2
t

√
2π

ˆ ∞
−∞

[
A(k)ei(kx+ωt) +B(k)ei(kx−ωt)

]
dk,

where

ω = ω(k) =

√
c2k2 − α2

4

A(k) =
1

2

[
F (k)

(
1 +

α

2iω

)
+
G(k)

iω

]
B(k) =

1

2

[
F (k)

(
1− α

2iω

)
− G(k)

iω

]
F (k) =

1√
2π

ˆ ∞
−∞

e−ikxf(x) dx

G(k) =
1√
2π

ˆ ∞
−∞

e−ikxg(x) dx.

Perhaps the most striking feature of the solution is the factor e−
α
2
t, which means that the

amplitude of the wave decreases exponentially with time. This is due to the dissipation parameter
α in the PDE. In the event α = 0, then

ω = ck

A(k) =
1

2

[
F (k) +

G(k)

ick

]
B(k) =

1

2

[
F (k)− G(k)

ick

]
,

and d’Alembert’s solution for the wave equation is obtained as expected (see pg. 37 in the
textbook).
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